PyEMMA is a Python library for the estimation, validation and analysis Markov models of molecular kinetics and other kinetic and thermodynamic models from molecular dynamics (MD) data.
PyEMMA installation is based on the Anaconda Python distribution.
Tutorials use Jupyter and Jupyter notebooks.
Installation of Anaconda and Jupyter in docker containers (Tutorial).
In Windows, it becomes:
C:\Users\cassmedchem\dockers\docker-data-science> docker run --rm -it -p 8888:8888 -p 8889:8889 -v "c:\Users\cassmedchem\dockers\docker-data-science:/home/jovyan" jupyter_emma
A jupyter server starts and it is possible to reach the server with the suggested instructions:
In c:\Users\cassmedchem\dockers\docker-data-science there will be the notebook with the PyEMMA tutorial that can be loaded in Jupyter.
It is necessary to install PyEMMA using a Conda terminal:
It is possible to check the contents of the directory using ls statement and then switch to the correct directory
Definition of the topology file
# define the topology of the system top = 'cPep26_1_wat_p.gro'
Preparing a file with all trajectories name
files=[] for f in os.listdir(): if '.trr' in f: files.append(f) print (len(files), files)
Definition of the featuring topology
# define features: torsions torsions_feat = pyemma.coordinates.featurizer(top)
Features addition (torsion angles)
torsions_feat.add_backbone_torsions(cossin=True, periodic=False) torsions_feat.add_sidechain_torsions(cossin=True, periodic=False, which='chi1') torsions_feat.add_sidechain_torsions(cossin=True, periodic=False, which='chi2') torsions_data = pyemma.coordinates.load(files, features=torsions_feat) labels = ['torsions'] data_concatenated = np.concatenate(torsions_data) fig, ax = pyemma.plots.plot_feature_histograms(data_concatenated, feature_labels=torsions_feat) fig.set_size_inches(11,18)